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We study the scaling properties of the solid-on-solid front of the infinite cluster in two-dimensional gradient
percolation. We show that such an object is self-affine with a Hurst exponent equal to 2/3 up to a cutoff length
�g−4/7, where g is the gradient. Beyond this length scale, the front position has the character of uncorrelated
noise. Importantly, the self-affine behavior is robust even after removing local jumps of the front. The previ-
ously observed multiaffinity is due to the dominance of overhangs at small distances in the structure function.
This is a crossover effect.
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Rough surfaces showing nontrivial scaling properties
have been extensively studied theoretically, numerically, and
experimentally over the last couple of decades. Examples of
such surfaces are those appearing during brittle fracture �1�,
which were first characterized as being fractal �2� but it was
then realized that the concept of self-affinity was more ap-
propriate �3�. The question of self-affinity versus fractality
has also been the focus of intense research on invasion fronts
in porous media and on the dynamics of magnetic domain
walls �4�. It was recently reported that the displacement
fronts in self-affine fractures are self-affine �5�. More re-
cently, a possible explanation for the observed self-affinity of
fracture surfaces has been proposed and hinges on a clear
understanding of the distinction between fractality and self-
affinity �6,7�. It has also been suggested that brittle fracture
surfaces are multiaffine rather than simply self-affine �8�.
Whether this is so remains an open question �9�.

It is the aim of this Rapid Communication to study the
question of fractality, self-affinity, and multiaffinity of a front
in a system, which is simple enough to be tractable, namely,
that of the gradient percolation �10�. In the literature there
are already studies of this system in the present context. Fu-
ruberg et al. �11� study the jumps in the position of the solid-
on-solid �SOS� front of the infinite cluster, whereas Asi-
kainen et al. �12� conclude that this front is multiaffine. We
will show that in this Rapid Communication up to a given
scale, the SOS front is self-affine with a well-defined Hurst
exponent, whereas on larger scales its position becomes un-
correlated. The self-affinity is not caused by the jumps in the
position of the front due to overhangs, but is related to its
fractal structure. The multiaffinity seen by Asikainen et al.
has its origin in the overhangs resulting from the definition
of the SOS fronts and shows up in the structure function on
small scales.

In gradient percolation, a spatial gradient in the occupa-
tion probability p is introduced. A Cartesian coordinate sys-
tem �i , j� is oriented with respect to the finite lattice of size
Li�Lj �assuming for the rest of this paper that the lattice is
two dimensional�, so that the i axis runs perpendicular to the
gradient �i.e., along the lower edge� and the j axis along the
gradient �i.e., the left edge�. The gradient is introduced in the
j direction so that p�j�=gj, where the gradient g=1/Lj.
However, the cluster connected to the lower edge will reach
some average value j= jg, with an associated occupation
probability pg=gjg. The region around jg is critical and has a
width �, spanning between j±= jg±� /2, where � is the corre-
lation length associated with the critical region in the
direction of the gradient. Defining p±=gj± and setting
�= �p±− pg�−�= �g�j±− jg��−�, where � is the correlation length
exponent, Sapoval et al. �10� found that ��g−�/�1+��=g−4/7.

The infinite cluster has a fractal structure with an upper
cutoff in length scale set by the width of the critical region �.
We now focus on the front of this infinite cluster and define
precisely what we mean by this front j�i� in the gradient
percolation problem. Our starting point is the perimeter of
the cluster of occupied sites that is attached to the p=1 edge
of the lattice. Since this perimeter contains overhangs and
therefore is multivalued when interpreted as a function j�i�,
we use the SOS method to extract a single-valued function
for its position �see Fig. 1�. For each i, we use either the j
value, which is closest to the p=0 edge �top side� or the j
value, which is closest to the p=1 side �bottom side� or the
average over all the j values attached to a given i value
�average front�.

A trace j�i� is statistically self-affine if the probability
density ��i , j�, for it to have a value j at i, given that j=0 at
i=0, has the invariance

�����i,��j� = ��i, j� , �1�

where � is the Hurst exponent. This invariance must be
caused by spatial correlations in j along the i axis. We note
that a Lévy flight, which is an uncorrelated random walk
whose step size h is drawn from a power-law distribution
N�h��h−�−1, will satisfy Eq. �1� with an apparent Hurst ex-
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ponent �=1/�. However, in this example, satisfying Eq. �1�
is due to the step size distribution and not to spatial correla-
tions �15�.

We have used the average wavelet coefficient �AWC�
method �16,17� to analyze the structure of the SOS fronts.
The AWC method consists of wavelet transforming j�i�, and
averaging the wavelet coefficients w�b ,a� at each length
scale a over position b, W�a�= �w�b ,a��b. If j�i� is self-affine,
the averaged wavelet coefficients will scale as

W�a� � a�+1/2. �2�

We show in Fig. 2, the averaged wavelet coefficients based
on the Daubechies-4 wavelets for the bottom-side fronts. The
plots for the top and average fronts are comparable. The data
are based on averages over 2201 samples for Lj in the range
64–2048 and 200 samples for Lj =4096 and 8192. Li was set

to 2048 for all the different Lj. The gradient g was set to
1/Lj. There is a clear crossover between two regimes in
these plots. At smaller length scales, one does indeed find the
behavior of Eq. �2� indicating self-affinity. On larger scales,
the slope of the log-log plots are zero indicating �=−1/2,
which corresponds to uncorrelated or white noise �18�. Fur-
thermore, we observe excellent data collapse when W is
scaled by g−� and the length scale a is scaled by g−	. We will
show below that

� = 2 − De =
2

3
, �3�

	 =
�

1 + �
=

4

7
, �4�

and

� =
3

2
	 =

6

7
, �5�

where De=4/3 is the fractal dimension of the external pe-
rimeter of the front �20�.

The main goal of this Rapid communication is to derive
Eq. �3� and thus demonstrate that � is a proper Hurst expo-
nent and j�i� is a self-affine function. To this end, we need to
demonstrate two things: First, j�i� satisfies the scaling rela-
tion �1� and, second, that this is not due to a power-law tail in
the step size distribution. We note that since the average
wavelet coefficients obey Eq. �2�, j�i� automatically satisfies
Eq. �1�. Therefore, we now need only to identify the mecha-
nism behind this scaling.

In order to derive Eq. �3�, we start by noting that the
distribution of distances m between crossing points between
a planar fractal curve with dimension De—e.g., the percola-
tion perimeter—and a straight line follows the power-law
��m��m−De �19�. Introducing a gradient in the j direction
and placing the straight line in the critical region interval
�j− , j+�, and parallel to the i axis, the distribution of crossing
point distances m remains the same. A self-affine curve char-
acterized by a Hurst exponent �, leads to a distribution of
crossing point distances given by ��m��m−�2−�� �19�. By
comparing this expression to ��m��m−De, Eq. �3� immedi-
ately follows. However, we still need to show that j�i� is
indeed self-affine, in other words the scaling relation Eq. �1�
is not caused by jumps.

First, we turn to deriving Eqs. �4� and �5�. The correlation
length in the direction of the gradient, the j direction, is
��g−�/�1+��. Since the perimeter is locally isotropic, this is
also the correlation length in the i direction. The crossover
length scale from self-affinity to uncorrelated noise is the
correlation length �. Hence, rescaling a→a /��a /g−�/�1+��

gives data collapse along this axis, which demonstrates Eq.
�4�. Likewise, the crossover length scale in the j direction is
�. This implies that the normalized wavelet coefficient at this
scale, W��� /�1/2, is equal to �. Hence, W�����3/2�g−�3/2�	

�g−�, and �= �3/2�	=6/7, as stated in Eq. �5�.
In order to show that j�i� is a self-affine function, we need

to demonstrate that � is not caused by the step size distribu-
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FIG. 1. Top-side and bottom-side SOS fronts based on the pe-
rimeter of the cluster connected to the p=1 edge �shown in the inset
as dots�. We also show the filtered j0�i� front �see Eq. �6��.
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FIG. 2. Data collapse of the averaged wavelet coefficients for
the bottom side front based on lattice size Lj =64 to 8192, while
Li=2048. We show that g=1/Lj. The straight line has a slope of
�+1/2, �see Eq. �2��.
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tion. To this end, we define the following transformation of
the function j�i�→ jk�i�, where we factorize the function in
such a way that we can distinguish the respective roles of
persistency and step sizes,

jk�i� = 	
m=0

i

sgn�j�m + 1� − j�m���j�m + 1� − j�m��k, �6�

where �j�m+1�− j�m��=h�m� is the step size at position m.
We have, in particular, that j1�i�= j�i�. It was shown in �11�
that h is distributed according to

N�h,g� = h−De−1f�hg	� , �7�

where De=4/3 and f�z� approaches a constant as z
1 and
falls off faster than any power law as z→�. The step size
distribution comes from the appearance of overhangs in the
perimeter. An overhang is defined as the jump made by the
front from one position along the i axis to the next due to a
backwards turn �11,13,14�. In order to confirm that the over-
hangs do not generate the Hurst exponent �=2/3, we analyze
the filtered front j0�i�, defined in Eq. �6�. With k=0, we
eliminate the overhangs altogether �21�. Figure 3 shows the
data collapse based on j0�i� corresponding to the bottom side
j�i� shown in Fig. 2. The scaling along the i axis is un-
changed as no change in the system has been made in that
direction. However, since all step sizes have been reset to
unity in the transformation j�i�→ j0�i�, the rescaling in the j
direction is no longer controlled by jc. In order to regain data
collapse for different g=1/Lj, we need to rescale the lattice
units in this direction by the Hurst exponent �=2/3. The
straight line matching the small-a region of the figure has a
slope 2/3+1/2, while the straight line matching the large-a
portion has a slope of 1 /2+1/2 corresponding to an uncor-
related random walk. This shows that, for small scales, the

�=2/3 is indeed a Hurst exponent. On the other hand, for
longer length scales, we expect random walk behavior since
white noise gives precisely the exponent 1 /2 in the transfor-
mation j�i�→ j0�i�.

In order to analyze the multiaffinity that has been reported
in this problem �12�, we construct the structure function
Ck�n ,g�= ��j�m+n�− j�m��k�. Multiaffinity occurs when
Ck�n ,g�1/k does not scale with a single k-independent expo-
nent with respect to n. Using the overhang distribution �7�,
we find Ck�1,g��gs�k�, where s�k�=min�0,	�De−k��
=min�0, �16/21−4k /7��. The self-affine character of j�i�
cannot be visible in the structure function for n=1 but will
appear only gradually as n is increased. We may therefore
analyze the structure function based solely on the Lévy char-
acter induced by the overhangs in the small-n limit. We will
call this the Lévy regime, whereas for larger n, where the
self-affinity dominates, we will refer to it as the self-affine
regime. The scaling with respect to g for Ck�1,g� persists for
n�1 in the Lévy regime since j�i+n�− j�i� follows a Lévy
distribution whose power-law tail does not change with in-
creasing n. Hence, we expect Ck�n ,g��gs�k� in this regime.
In order to derive its dependence on n in the Lévy regime,
we note that the distribution of distances l between over-
hangs follows the same power law as the overhangs them-
selves. This can be seen as follows. When there is a gradient
present in the j direction, the length of the perimeter scales
as Li

De, when the gradient is kept fixed. Making a cut through
the perimeter with a straight line parallel to the i axis, the
crossing points of the perimeter with the line form a fractal
set with dimension De−1. Hence, there are, in a given inter-
val l, Nl� lDe−1 overhangs �19�. These overhangs give rise to
an effective Hurst exponent 1 /De=3/4 on the fractal set,
seen, e.g., in the width of the trace, 
j�Nl

1/De � l�De−1�/De.
Since the overhangs form a fractal set, we will need
Nb� l−�De−1� boxes of size l to cover it. Due to the averaging
over position i, there will be yet another factor l �see �22��.
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FIG. 3. Data collapse of the averaged wavelet coefficients for
the smoothed j0�i� based on the bottom side front. The lattice sizes
and gradients are as in Fig. 2. The long-dashed line has a slope of
7/6 �see Eq. �2��, whereas the dotted line has a slope of
1=1/2+1/2, consistent with uncorrelated random walks.
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FIG. 4. Ck�n ,g� as a function of n for k=1, 2, and 3. The three
leftmost straight lines have slopes according to Eq. �8�, while the
bold middle line has a slope equal to 2/3 in accordance with Eq.
�9�. For large n the structure functions become flat indicating that
one has reached the decorrelated regime.
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We may now assemble these pieces to form the scaling
of the structure function in the Lévy regime, Ck�l ,g�
�Nl

kNbl� lk�k
L
, where

�k
L = 
1 −

1

De
� +

2 − De

k
=

1

4
+

2

3k
. �8�

Therefore, in the Lévy regime, i.e., for small n, there is mul-
tiaffinity. A similar analysis in the self-affine regime, i.e., at
larger n, yields

�k
SA = � =

2

3
. �9�

Therefore there is no multiaffinity in this regime. The n for
which there is the crossover between the Lévy and the self-
affine regime will depend on k and is governed by the pref-
actors that the scaling analysis presented here cannot access.
For n beyond �, the front decorrelates and the structure func-
tion becomes independent of n. We show in Fig. 4 the k=1,
2, and 3 structure functions. Their behavior is in accordance
with our predictions. However, note that for k=2, �2

L=7/12

=0.58, which is close to �=2/3. Furthermore, the self-affine
regime is close to the decorrelated flat regime. Hence, it is
hard to distinguish between the Lévy and the self-affine re-
gime for this value of k. As k increases, the Lévy regime
grows, as the overhangs are emphasized for larger k.

To conclude, we have shown that the structure of the in-
terface in a gradient percolation problem combines fractal
and self-affine properties. The perimeter that includes numer-
ous overhangs has the classical fractal structure �10�. How-
ever, solid-on-solid fronts that are extracted from the perim-
eter, have a clear self-affine property up to a crossover length
scale � even if local jumps, inherited from overhangs, are
removed. On larger scales it shows an uncorrelated noise
behavior. The structure function is, however, sensitive to the
overhangs on smaller scales and this implies a multiaffine
scaling behavior in this regime. Implications of our results
for physical interpretations of analogical and numerical ex-
periments are important.
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